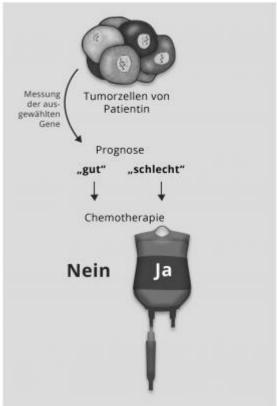

Gen-ethischer Informationsdienst

Hoffnung oder Hype?


Biomarkertests und Therapieentscheidungen bei Brustkrebs

AutorIn Isabelle Bartram

Etablierung des Genexpressionsprofils

Anwendung des Genexpressionstests

Es bestehen berechtigte Zweifel, dass Genexpressionstests so verlässlich sind, wie ihre Hersteller seit Jahren behaupten.

Sie heißen *Oncotype DX*, *MammaPrint* oder *EndoPredict* und sie sollen helfen, Brustkrebspatientinnen die Chemotherapie zu ersparen. Ob Genexpressionstests dieses Versprechen halten, ist jedoch fraglich.

(pdf)

<u>Update 10.09.18:</u> Das Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen (IQWiG) hat nach der Veröffentlichung einer neuen Studie im Frühjahr 2018 erneut den Nutzen der Biomarkertests untersucht. Das IQWiG kommt durch die neue Datenlage nun zum Schluss, dass der Test Oncotype Dx bestimmten Patient_innen tatsächlich bei der Therapieentscheidung bei Brustkrebs helfen kann. Für diese ist dabei zu beachten, dass die Ergebnisse laut IQWiG nicht auf Tests anderer Hersteller übertragbar seien und die neue Studie Fragen offen lasse.

Knapp 70.000 Frauen erkranken jedes Jahr in Deutschland neu an Brustkrebs. 1 Die Überlebensrate liegt inzwischen zwar bei 80 Prozent, aber die Behandlung hat gravierende Nebenwirkungen. Rund 60 Prozent der Patientinnen werden einer Chemotherapie unterzogen, um Spätmetastasen zu verhindern - was vermutlich aber nur bei ganz wenigen von ihnen tatsächlich nötig ist: Studien belegen zwar im Durchschnitt der untersuchten Probandinnen einen klaren Überlebensvorteil, wenn eine ergänzende Chemotherapie erfolgt. Wer allerdings nach der Entfernung des Tumors auch ohne diese Therapie nicht wieder erkrankt wäre, und bei wem sie für ein längeres Überleben tatsächlich nötig war, ist unklar.

Hoffnung auf Eindeutigkeit

Eine Prognose des Krankheitsverlaufes ist in der Onkologie die Basis von Behandlungsempfehlungen. Solche Aussagen über das Risiko der Metastasierung beziehungsweise einer Neuerkrankung erfordern eine komplexe Wahrscheinlichkeitsrechnung, da Brustkrebs eine heterogene Erkrankungsgruppe mit unterschiedlichen Subtypen ist. Bei dieser Rechnung spielen auch Faktoren wie das Erkrankungsstadium, das Alter der Patientin oder deren Krankheitsgeschichte eine Rolle.

Hilfe bei der Prognosestellung bieten Online-Tools wie *Adjuvant!Online* und *Predict*, wo Ärzt_innen die verschiedenen Faktoren eingeben und Wahrscheinlichkeiten errechnen lassen können. Die Heterogenität der Erkrankung und die individuelle Lebenssituation der Patientin können aber auch solche Rechenhilfen nicht abbilden, das Risiko der Fehleinschätzung bleibt. Wie schön wäre es also, wenn es eine Maschine gäbe, in die man eine Probe des Tumors stecken und dann eine garantiert richtige und eindeutige Behandlungsempfehlung erhalten würde - Risiko der Metastasierung hoch oder niedrig, Chemotherapie ja oder nein.

Diese Sicherheit sollen nun Genexpressionstests liefern. Doch es bestehen berechtigte Zweifel, dass sie so verlässlich sind, wie ihre Hersteller seit Jahren behaupten. Mehrere Studien konnten zeigen, dass die Verwendung von konventionellen klinischen Daten oder die Kombination weniger Proteinmarker die selbe prognostische Aussagekraft haben wie diese Tests, und das zu wesentlich geringeren Kosten. Dennoch lohnt es, sich Genexpressionstests genauer anzuschauen, wird doch derzeit über eine Übernahme ihrer Kosten durch die gesetzlichen Krankenkassen verhandelt.

Heterogene Zellen

Tumore sind molekulargenetisch heterogen, das heißt, ihre Zellen unterscheiden sich in ihren Eigenschaften voneinander - nicht nur zwischen verschiedenen Tumoren, sondern auch innerhalb ein und desselben Tumors bei ein und derselben Patientin. Die molekulargenetische Untersuchung von Tumoren resultiert daher zwangsläufig in heterogenen Daten. Anhand von Tumoreigenschaften allgemeingültige Aussagen zu machen ist äußerst schwierig, weil schon für eine einzelne Tumorprobe beschriebene genetische Eigenschaften wegen der Unterschiedlichkeit der Zellen nur einen Durchschnittswert darstellen, erst recht für Tumorproben einer größeren Zahl von Patientinnen. Erst mit der Integration von Informationstechnik in die biomedizinische Forschung können solche komplexen Datenmengen analysiert und zu begreifbaren und brauchbaren Datenhäppehen reduziert werden.

Die Entwicklung der Genexpressionstests beruht auf der Erfindung der so genannten Microarray-Technik in den späten 1980er Jahren. Mit dieser Methode kann die Aktivität von potentiell jedem Gen in einer Gewebeprobe gleichzeitig gemessen werden. 2 Für die Genexpressionstests wurden so einzelne Gene identifiziert, deren Aktivität bei einer Erstdiagnose von Brustkrebs Hinweise auf den zukünftigen Krankheitsverlauf geben soll. Das sind zum Beispiel Gene, die in Tumorproben von Patientinnen aktiv sind, bei denen später Metastasen auftreten, in Proben von Patientinnen *ohne* Neuerkrankung hingegen nicht. Die heute verfügbaren Genexpressionstests messen die Aktivität einer *Kombination* verschiedener, auf diese Weise identifizierter Gene.

Problematische Methodik

Allerdings variieren die Kombinationen je nach Hersteller. Die Tests *Oncotype DX* und *MammaPrint* beispielweise stimmen nur in einem einzigen Gen überein - eine direkte Konsequenz der kleinen Patientinnenzahl, auf die sich ihre Entwicklung stützt. Rein mathematisch müssten tausende Patientinnenproben analysiert werden, um robuste Genexpressionsprofile zu berechnen. Für die MammaPrint-Entwicklung wurden allerdings lediglich 34 Patientinnen, die innerhalb von fünf Jahren Metastasen entwickelten, mit 44, die im gleichen Zeitraum krankheitsfrei blieben, verglichen.3

Skepsis ist auch gegenüber der Aussagekraft der Tests angebracht. Sie wurde zum Teil an Patientinnen überprüft, die auch schon an Studien zur Entwicklung der Tests teilgenommen hatten - Voraussetzung für eine unabhängige Bewertung der Tests ist aber eine separate Patientengruppe, die an der Entwicklung nicht beteiligt war. Von den in die MammaPrint-Evaluierungsstudie eingeschlossenen 152 Patientinnen waren 61 bereits Teil der Entwicklungsstudie. Werden sie nicht berücksichtigt, sinkt die Spezifität des Tests drastisch: Eine von zwei Patientinnen, die metastasenfrei bleibt, wird von dem Test nicht erkannt. In der Folge würden demnach immer noch etwa 50 Prozent aller Patientinnen einer Chemotherapie ausgesetzt, ohne sie zu brauchen.4

Kein Wunder also, dass eine Vergleichsstudie an der versprochenen Eindeutigkeit zweifeln lässt: Nur 76 Prozent der Patientinnen wurden von Oncotype DX und EndoPredict in dieselbe Risikokategorie einsortiert, einer von vier Patientinnen sagten die beiden Tests also unterschiedliche Krankheitsverläufe voraus. Vor allem bei den Hochrisikopatientinnen waren die Diskrepanzen groß: Während EndoPredict ein gutes Viertel der Patientinnen dieser Kategorie zuordnete, waren es bei Oncotype DX mehr als zwei Drittel. 5

Warten auf Evidenz

Nach ihrer Entwicklung wurden die verschiedenen Tests in retrospektiven Studien überprüft. Damit sind Studien gemeint, bei denen archivierte Proben von Patientinnenkollektiven aus abgeschlossenen Studien getestet und die Analyseergebnisse im Nachhinein mit dem Krankheitsverlauf korreliert werden. Die Aussagekraft solcher retrospektiver Studien ist umstritten. Viele Expert_innen halten nur Ergebnisse aus *prospektiven* Studien für ausreichend, um den medizinischen Nutzen eines Verfahrens nachzuweisen, weil es hier tatsächlich auf die Probe gestellt wird.

Mit Genexpressionstests werden momentan mehrere solcher Studien durchgeführt, für drei liegen bereits Ergebnisse vor. Die Ergebnisse von *MINDACT* (MammaPrint) wurden im April dieses Jahres präsentiert. 111 Zentren in neun Ländern waren beteiligt, 47 Millionen Euro kostete die Studie. Laut Konferenz-Abstract ist der Nutzen von MammaPrint eindeutig belegt. Die Originaldaten der Studie wurden allerdings nicht publiziert. Immerhin verglich MINDACT die Aussagekraft von MammaPrint mit der Risikoeinschätzung durch konventionelle klinische Daten.

Anders *TailorX* und *PlanB* (Oncotype DX): Hier wurde ausschließlich Oncotype DX zur Kategorisierung der Patientinnen verwendet, ein Vergleich mit konventionellen prognostischen Faktoren fand nicht statt. Die Überlebensraten derjenigen Patientinnen, die aufgrund der Oncoytpe-Testergebnisse auf eine Chemotherapie verzichteten, waren nach drei (PlanB) beziehungsweise fünf (TailorX) Jahren hoch, die Studienergebnisse scheinen die Aussagekraft von Oncotype DX Test also zu bestätigen. Neben dem fehlenden Vergleich mit konventionellen Prognoseverfahren ist diese Bestätigung aber auch deshalb mit Vorsicht zu genießen, weil es sich um Ergebnisse nach einem kurzen Zeitraum handelt - viele Rückfälle bei Brustkrebs treten aber erst deutlich später als nach fünf Jahren auf.

Vorstoß in die Praxis

Trotz unklarer Evidenzlage und gespaltener Einschätzung innerhalb der Medizincommunity haben die Tests bereits ihren Weg in die klinische Praxis gefunden. Der Hersteller von Oncotype DX *Genomic Health* wirbt damit, dass bereits eine halbe Million Patientinnen den Test durchgeführt haben. Die allermeisten der Patientinnen verzichten nach Einordnung in die Niedrigrisikogruppe durch den Test auf die nach den etablierten Behandlungsrichtlinien empfohlene Chemotherapie. Und das, obwohl in einer Umfrage ein Drittel der Patientinnen die Funktionsweise des Tests und seine Aussagekraft nicht verstand.6

Im November 2015 veröffentlichte das *Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen* (IQWiG) einen Vorbericht zum medizinischen Nutzen der Genexpressionstests. Die Nutzenbewertung durch das IQWiG ist Voraussetzung einer Aufnahme neuer Verfahren und Arzneimittel in den Leistungskatalog der gesetzlichen Krankenkassen. Derzeit werden hierzulande die 2.000 bis 3.000 Euro teuren Tests nur in Einzelfällen von den Kassen übernommen.

Das Ergebnis des Vorberichts fiel niederschmetternd aus: Von den vier in Frage kommenden klinischen Studien charakterisierte das IQWiG drei als nicht bewertbar, da von den ursprünglichen Studienpatientinnen jeweils weniger als 70 Prozent in die Auswertung einbezogen wurden. Und auch die vierte Studie (EndoPredict) konnte keine signifikante Aussagekraft bezüglich des Therapieansprechens der Patientinnen belegen. "Dafür, dass die Hersteller seit Jahren mit großem Aufwand die Werbetrommel für ihre Biomarker-Tests rühren und bei den betroffenen Frauen große Hoffnungen wecken", so Stefan Lange, stellvertretender Leiter des IQWiG, "ist die Datenlage erstaunlich dünn."7

Perfide Werbestrategien

Die Werbetrommel der Hersteller ist nicht immer als solche zu erkennen. Geben Patientinnen bei Google die Suchworte "Brustkrebs Therapie Entscheidung" ein, erscheint ganz oben auf der Trefferliste die Seite *meinetherapieentscheidung.de.* "In über 20 medizinischen Studien zur Prüfung und zum Beweis der Leistungsfähigkeit dieses Brustkrebstests", so heißt es dort, "waren über 70.000 Patientinnen eingeschlossen". Dass für drei der im folgenden erwähnten fünf Studien (*Rxponder*, *ADAPT*, *Clalit*) noch keinerlei Ergebnisse bekannt sind, scheint keine relevante Information zu sein.

Das ist kein Wunder, ist die Website doch ein klassisches Beispiel für heutige Marketingstrategien. Vom Oncotype-Anbieter Genomic Health betrieben, erscheint sie als neutrale Beratungsseite, ihre Überschrift "Leitfaden für die Behandlung von Brustkrebs" lässt vermuten, hier würden Behandlungsrichtlinien medizinischer Fachgesellschaften allgemeinverständlich erklärt. Tatsächlich wird aber hauptsächlich

Oncotype DX beworben, "um eine sichere, individuelle Therapieentscheidung zu treffen".

Auch vermeintlich selbstorganisierte und gemeinnützige Selbsthilfegruppen sind ein beliebtes Marketing-Instrument. So kritisiert die *Allianz gegen Brustkrebs e.V.*, ein "Patientenportal" des *Verbands der forschenden Arzneimittelhersteller* (VfA), dass die Kosten von Genexpressionstests möglicherweise nicht von den Krankenkassen übernommen werden, mit den Worten: "Eine nicht nur fahrlässige, sondern grob fahrlässige Körperverletzung wird bewusst und billigend in Kauf genommen."9

Als fahrlässige Körperverletzung ist wohl eher zu bezeichnen, dass die Tests verzweifelten Patientinnen ohne Beleg ihrer tatsächlichen Wirksamkeit als "sicher" und "eindeutig" verkauft werden. Auch geht es vorrangig sicherlich nicht um das Wohlergehen von Patientinnen, wenn Validierungsstudien für Genexpressionstests von Personen durchgeführt werden, die als Shareholder finanziell vom Erfolg dieser Studien profitieren, oder wenn Hersteller der Tests die klinischen Studien sponsern und beim Verfassen von wissenschaftlichen Publikationen "assistieren".

Therapieentscheidungen in der Krebsbehandlung verbessern und wenn möglich Patientinnen eine Chemotherapie ersparen zu wollen, ist ein gutes und wichtiges Anliegen. Genexpressionstests sind aber wohl eher Verfahren, die "knapp Horoskope schlagen", wie ein Kritiker es ausdrückt. 10 Das Geld, das in Validierungsstudien für dieses fragwürdige Produkt einer marktförmigen Forschung gepumpt wird, sollte jedenfalls eher in die Entwicklung robusterer Methoden fließen.

- 1Daten von 2012, siehe www.krebsdaten.de oder www.kurzlink.de/gid238_e.
- 2An der Microarray-Technik regte sich in der Wissenschaft bereits Kritik, als die erste Generation der Tests entwickelt und vermarktet wurde. Vgl. Cobb 2006: Microarrays The Search For Meaning in a Vast Sea of Data, Biomedical Computation Review, Übersetzung IB.
- 3van't Veer et al. 2002: Gene expression profiling predicts clinical outcome of breast cancer, Nature 415(6871), S. 530-536.
- 4Michiels et al. 2007: Interpretation of microarray data in cancer, British Journal of Cancer 96(8), S. 1155-1158.
- <u>5</u>Sinn et al. 2013: Multigene Assays for Classification, Prognosis, and Prediction in Breast Cancer: a Critical Review on the Background and Clinical Utility., Geburtshilfe und Frauenheilkunde 73(9), S. 932-940.
- <u>6</u>Tzeng et al. 2010: Women's experiences with genomic testing for breast cancer recurrence risk. Cancer 116(8), S. 1992-2000.
- 7Vgl. PM IQWiG ,10.11.15, <u>www.iqwig.de</u> oder <u>www.kurzlink.de/gid238_e</u>. Im Oktober 2016 soll der Abschlussbericht veröffentlich werden.
- 8Vgl. dazu den Artikel von Uta Wagenmann auf Seite 16 in diesem Heft.
- 9PM Allianz gegen Brustkrebs e.V., 22.07.13.
- <u>10</u>Vgl. Ioannidis 2005: Microarrays and molecular research: noise discovery? The Lancet 365, S. 454-455, Übersetzung IB.

Informationen zur Veröffentlichung

Erschienen in: GID Ausgabe 238 vom November 2016 Seite 35 - 37